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SUMMARY / _ _

The feasibility of mechanical impedance control and simulation in

environmental shock and vibration testing of mechanical structures was

investigated theoretically. Fundamental and useful mathematical ex-

pressions for impedance are given for the analysis, control, and simula-

tion in mechanical structures that can be considered as one-dimensional

linear-passive systems. The validation of these expressions in the ap-

plication to impedance control and simulation is approached primarily

from analytical considerations. General theories of application are

summarized, along with a few simple examples of specific cases. The

overall results of the investigation, as well as certain conclusions that

may be drawn, are discussed. Several recommendations are made in

connection with the information obtained from this study.
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A THEORETICALBASIS FOR MECHANICAL
IMPEDANCESIMULATIONIN SHOCKAND

VIBRATIONTESTINGOF ONE-DIMENSIONALSYSTEMS

by

F. J. On and R. O. Belsheim*

Goddard Space Flight Center

INTRODUCTION

One of the most vexing problems confronting the environmental test engineer today is the problem

of how to achieve a more realistic simulation of the shock and vibration environment in the test lab-

oratory. The shock and vibration environmental testing of today attempts to incorporate a certain

degree of conservatism in its techniques and procedures for defining a qualification test. It is neces-

sary for the test engineer to consider the problem of how to minimize such conservatism so that a

higher degree of oplimum design criteria can be approached. The intent of this paper is to pre-

sent methods, based on the concepts of mechanical impedance, whereby simulation in environmental

testing techniques and procedures may be optimized.

It is well known that the analysis of structures under dynamic loadings requires that the dynamic

characteristics of the structures be known in addition to the characteristics of the excitations. Based

on usage it is less well known that the simulated dynamic environmental test in the laboratory should

depend similarly on these requirements. A useful method of specifying these requirements, for

structures that can be considered as linear elastic systems, is in terms of mechanical impedance.

The concepts of mechanical impedance are directly analogous to the concepts of electrical impedance,

and many of the same theorems and operational methods apply (Reference 1). Although the concepts

of mechanicalimpedance have been employed for many years in the analysis of dynamic responses oI

structures (References 2, 3, and 4), little contribution has been made toward a solution of the

simulation and control of pertinent structural dynamic characteristics in the test laboratory. The

importance of attempting such a solution cannot be overemphasized. As the problem of achieving

optimum structural design criteria becomes increasingly important, particularly in the areas of

aerospace applications, the need for a solution is readily evident.

*Dr. iqelsheim /lead of the Structures /]ranch, Mechanics Division, Naval Research Laboratory, _rashington 25, I).C., served as a

consultant to Goddard Space Flight (enter tot the study reported herein.



IMPEDANCE ANALYSES OF ONE-DIMENSIONAL SYSTEMS

Continuous mechanical systems that can be considered as linear systems often can be evaluated

by applying the concepts of mechanical impedance. The adequacy of such an approach is generally

dependent on the exactness of the assumption that the system is linear and passive.* Consequently,

in the analyses that follow, this assumption is tacitly made. Furthermore, for convenience in pres-

entation the following analyses are referred to aerospace-vehicle- payload and testing-machine-

payload systems, which are considered the most significant system combinations because weight is

so important.

Theoretical Relations

An assumption that any realistic aerospace structure behaves as a one-dimensional system is

unquestionably an oversimplification. The prevalence of modes of vibration due to bending, shear,

and rotary inertia forces is frequently observed in the field. However, to a first approximation,

significant information can often be obtained from a one-dimensional consideration; and this can be

of great advantage to the design, analysis, and qualification of the structure.

A general representation of a vehicle-payload system, which is identified by V and Pb for the

vehicle and payload respectively, is depicted in Figure 1. For the sake of analysis, the configuration

of the vehicle-payload has been approximated by the method of lumped parameters. By the applica-

tion of the force-current analogy for dynamical systems, the vehicle-payload representation of

Figure 1 is further simplified by its equivalent mechanical network, as shown in Figure 2. The ap-

plication of the mechanical network theory (Norton's theorem) further reduces the network of Fig-

ure 2 to that of Figure 3. In Figure 3, Qb (s3 is termed the transform of the force FCt} measured at
V a

terminal a when that terminal is blocked so that no motion occurs (hereafter, Qvb (s 1 shall be termed
a

blocked force); the impedances Zv° ( s I and Zeb (S) are the transform mechanical impedance of the

vehicle and payload looking back from terminal a, respectively. The quantity qv0 Cs l(hereafter termed

free velocity) is the transform of the velocity £I t ) measured at terminal a when that terminal is un-

restrained. In general, these transform quantities are complex.

Steady-State Vibrations

In the case of steady-state sinusoidal vibrations, the transform velocity at terminal a in Figure

3 prior to the connection of the payload impedance Zpb CS } is given by

qv o(S) : Zv (s) Qb, Cs) .
(1)

*Passitze systems as defined here are systems that do not possess any type of internal energy sources.
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Figure 2--Mechanical network equivalent of Figure 1.

(All symbols are defined in Appendix A.) With

the mechanical impedance zpb(s: of the payload
connected to terminal a, the resultant mechanical

impedance is

Zv b (s) : Zv (s) + Zt, b(s) ,
(2)

and the transform velocity at the ,joining terminal

of a and b becomes

• (s) : H i (sl Qvb (s)qV,_b ' (3)

where

m
I

• O O--

a b
0 0"_

I z

Figure 3--Simplified mechanical network equivalent of

a vehicle-payload system by use of Norton's theorem.

H I (s) = [Z%(s) +ZFb(S)]-' (4)



maybeconsideredassomefrequencyresponsefunction. SinceEquation1 showsthat

Qb(s) Zv Isl _va0s)Va a (5)

then Equation 3, in terms of free velocity qv0 Is ), becomes

_v b (s} H2 (s) qv0 s) , (6)

where

: (s) + (sH2 (s) Zva (s) vD Zpb (7)

may be considered as another frequency response function.

With Hz (s) and H2 (s) predetermined, Equation 3 or 6 may be used to predict the resulting velocity

characteristic at the terminal joining the vehicle v and payload Pb •

In cases whereby either V or Pb is replaced by another v k or Pr, new velocity characteristics

may be predicted. Suppose that the velocity characteristic corresponding to a new payload Pr on the

same vehicle va is desired; then, using Equations 3 and 6, the new velocity is

_vr (s) = H3 {s) _Vb (S) . (8)

where

s , s (9)

and zpr (s)is thetransform mechanical impedance of the new payload P .



Similarly, for the same payload Pb on a new vehicle Vk,

• rs' : H 4 (sl "
qVk b qva b

the new velocity may be predicted by*

(s) ,
(10)

where

or by

H 4 (s) , Z_r . ( S ) Z V k ( S _ ;

Clvkb ( S ! : H 5 (sl hvo b s),

(11)

(12)

in which

(13)

It follows that other variations of Equations 3 and 6 may be accomplished. One that seems most

significant is the case of a payload Pb designed to ride on a vehicle v , but to be vibration-tested on a

machine of dynamic characteristic Zsm (s ). To provide a realistic test, the dynamic characteristic of v
should be simulated by the test machine. By the method of lumped parameters, the simplified vehicle-

payload and machine-payload systems may be represented by Figures 3 and 4, respectively. From

Equations 3 and 6, we may obtain (with appropriate subscripts) the following:

qVab" (S : H 2 (s) (Iv 0 (s) (14)

qs h (s :: H 6 {s) qsm0 (s) , (15)

where

]':: (s) + Is ; (16)H 6 (s) Zs (s) Sm Zpb

*This prediction, based on Equations 10 to 13, is only of academic interest, since all terms in Equations 3 to 7 are required; it may be done

with the simpler equations.
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Figure 4--STmplified mechanical network equivalent of
a test-machlne - payload system by use of Norton's
theorem.

or, in terms of blockedforce,

qv_ (s) =

qs_ Is) :

where

H: Is) Qb (s) , (17)

H 7 (s) Qsb= (s) , (18)

F
H 7 (s) : LZsm(s) +Zpb

For the condition of simulation

_s b (s_ " :s) •' qVab '

:s (19)

(20)

and this requires that

where

qs_ <s) E2,6 s qvB0
(s), (21)

E2, 6 (s) : H 2 s H_ 1 (s) ;
(22)

or, in terms of blocked force,

_s2 (s) E:. 6(s) Q_(s), (23)

where

Z,,_ (s) : H I (s) H6-' (s). (24)

With _sm0 (s) from Equation 21 or 23, the dynamic characteristic of the vehicle-payload system of

Figure 3 is simulated in the system of Figu::e 4, in which a test machine has replaced the vehicle;

that is,

or

Cts b (s) _ _lvb (s) : H 1 (s) Qb (s). (26)



Equations 21and 23yield relations between the free velocity characteristics of the machine and

the free velocity or blocked force characteristics at the terminal of the vehicle. As a consequence

of Equations 21 and 23, Equations 25 and 26 are obtained. These are statements of simulation for

one-dimensional systems that are linear and passive.

So far, the steady-state case in which the forcing function is a harmonic function of time has

been considered. If the forcing function is given by a series of harmonic functions, the response can

be obtained by superposition of the elementary solutions. The principle of superposition can be ap-

plied to all cases in which the effect of simultaneous superposed actions is the sum of the effects of

each individual action. Thus, in the general case of steady-state vibrations, the principle of super-

position yields for any periodic excitation the equations analogous to Equations 1 to 26.

If it is assumed that the blocked force is given by a series of the form

M

F b ( t " : X FNb eiN_t (27)

N=I

and the free velocity by

M

x0(t) = ZX0,NeiN_t (M : 1,2, "''), (28)
N=I

then the equations analogous to Equations 3 and 6 are respectively:

M

• (t) = _-_HI(iN_.)F b e inapt (M= 1,2, "'') (29)XVab Va, N '

N= I

where

Hi (iNJ) HI (s){_=iN_o; (30)

and

where

• (t)
XVBb

M

: ZH2 (iN<-)XVO,N
N=I

H2(iNw) : H 2 (S)]s=iNc o •

e iN°_t , (31)

(32)



AnalogOUS to Equation 8,

• iNwt
= _I3 I _N_ xvsb, Ne

• tt_
_Var N_I

(33_

(34%

Analogous to Equations 10 and 12 respeCtivel_/"
. e IN_t ,

kNc__ab, N

• ttI : _.__14
Y'Vkb N=_

(35)

(36)

and

:_Vt_b N:1

eiN _t

(37)

where i_s Is_I,:_ "
_is__l_

(38)

A_alogOUS to Equations 21 and 23, respectivelY:

L " ekN _t

(39)

where

(40)



and

M

Xsmo (t) = EEt, 6(iN_:)Fb, v .NeiN_t ' (41)

N=I

where

El, 6 (iN_,) El,6 (s)l_=iN" " (42)

As a consequence of Equations 39 and 41, the statements of simulation for the general case of pe-

riodic excitations, which are analogous to Equations 25 and 26, are respectively

X Smb I t _ XVa b

M

E " eiN_'t (43)( t ) : H 2 (iNk:)Xvo, N
N=l

and

• it
X Sm b

M

x"v b (t) = EHt ( iN_l Fva.Nb eiNc.:t . (44)

N=I

Transient Motions

From the literature (Reference 2) transient force F(t) and velocity £(t) may be expressed by

the Fourier integral, while the inverse relation also holds. The response x(t) to the transient force

F(t) is related to the mechanical impedance Z(i_;) of the system, and the Fourier spectrum GF (i_)of

the transient force F(t). The Fourier spectrum of _(t) is

G;_ (i:,) : Z-1 (i_,:)G F (i_J) (45)

and the response itself is

_(t) = z-l(icC) GF(ic_)ei_tdo -' •
=-co

From Equation 45, mechanical impedance may be expressed by

(46)

z(io_) : G_-1 (ic_)GF(icz) •
(47)



It follows from Equation 45, denoting with appropriate subscripts, that the equations for transient

motions corresponding to the steady-state Equations 3 and 6 are respectively

G_v (i<zl : H I (i<z)GFvb (ioJ).b (48)

and

G_v (ic_) = H 2 (i_) G_v (i_) ;
.b o (49)

and the response itself is

_mx v (t) H 1 (i_)GFb * (iw) ei_tdw.b =-® (50)

or

mXvb" (t) = =-_H 2 i_) G_¢vo (i_) ei_t dc_ . (51)

In a similar manner the equations for the transient motions that are analogous to the equations

for the steady state are obtained:

From Equation 8,

_-mXv {t) : H 3 (i_)G_v (i_) ei_td_. (52)
= -m ab

From Equations l0 and 12,

• (t) =
XVkb iw) G .-t (iw) G. ( i_G. (iw) ei_t d_.Xvo _v.o Xv.b ' (53)

where

Es. 2 i_) = H21 (i_)H 8 (i_) ; (54)

or

X Vk b (t) = 9,

=-m

G-1
I i_) Fh (i_) G b

FV k

(iw) e i_t dc_ ,
(55)

10



in which

Eg, 1 (i.:) = Hll (i_)H 9 (i,_:) (56)

From Equations 21 and 23,

Xso t : E2, 6 i_z) G. (i_) e i_t d_
=-co Xvao

(57)

or

;is 0 t : El, 6 i_)GFvb (ion=) e ic°t d_, .
):-co a

(58)

From Equations 25 and 26,

X's b (t _ X'v. b (t) : =-_o H2 (i_:)G;'v.° (i_) e i_t da_ (59)

or

ccXs_b (t _ Xv.b" (t) : =-_ H 1 (i_) GFv h (i_;) e i_'t d .....
a

(60)

Equations 48 to 60 may be used for predicting responses due to transient excitations in one-

dimensional systems that are linear and passive.

Random Vibrations

In the case of random vibrations (Reference 5), if s r (_) is the spectral density of a station-

ary ergodic* random force (with a Gaussian probability distribution) applied at a point, the spectral

density of the response at the same point is

S_ (_,) = Z-' (i_:)[ 2S_(_:) , (61)

*A stationary random variable may be crudely defined as one whose source does not change character. An ergodic variable is one that obeys

the "ergodic hypothesis" of statistical mechanics; this hypothesis permits consideration of an event that occurs some percentage of total

time as an event with a corresponding probability of occurrence.

11



where]z-1(iv)] _ is thesquareof theabsolutevalueof either thereciprocalcompleximpedancefunc-
tionor the mobility (inverseof impedance).Theroot-mean-square(rms)valueof themotionis

'rm E f0°' (62)

It follows from the fundamental relation, Equation 61 (after denoting with appropriate subscripts),

that the equations for random vibrations which are analogous to those of the steady-state vibrations

may be obtained.

With Equation 61, the equations for random vibrations corresponding to the steady-state Equations

3 and 6 are, respectively,

The rms value of "
XVab

I

S_v (,,:) : H l ( i_)[ 2 S b (¢*') , (63)
ab FV

a

S_v ('_") : H2 (i_')12S_v {'_) (64)
ab a 0

may be obtained from Equations 63 or 64:

• 1 iw)] 2 S b c.)
XV b ( rms ) : H 1 ( ( d

FV a

(65)

or

Likewise, analogous to the steady-state Equation 8,

S_var (o)) : H 3 ( i(L,)I2 S_vab

r-

Xv (rms) = ]-_-_ I '_ iv)Ha ( 2 S_v
ar L-- J0 ab

Analogous to Equations 10 and 12, respectively,

(66)

(_) , (67)

(_) d_l _/: " (68)

S. (co) - E8,2 (io))2S.-1 (_z) S. (,:>) S. (_,) ,
XVkb XVa0 xVk0 XVab

(69)

FV V k abVkb a
(70)

12



andtheir rms valuesare

XVkb 2 (i_)2 S.-Ixv.° ((_)S;%kO(_)S.xv_(._)d

I/2

(71)

7

Analogous to Equations 21 and 23, respectively,

S. (o_) = E2, 6
XSmO

i_:) 2S.
Xvao

(c_,)

S£sm0 (o_) El. 6 i_)2SFb
a

(_=) ;

and their rms values are

I/2

(72)

(73)

(74)

_so (rms) : I_-_i _

1/2

E2,6 (ice) 2S;'v,o(CJ) dc_] ,
(75)

• ?:Xs o (rms) :

Analogous to Equations 25 and 26, respectively,

xVXSmb ab

S. (:. _ S- (¢,_)
x s x V

mb ab

and their rms values are

(76)

= H2 (in) 2 S. (_) (77)
XV 0

= H_(i_)[2 Sru (_) ; (78)
V a

XSmb

X Sm b

rills -' XVa b

rms -' Xv 6

( rms ) = H3 (ice) 2 S- (a:) d (79)
Xv a0

(rms) = H 1 (i_) 2 (_c)dc (80)

Equations 63 to 80 may be used for predicting responses due to random excitations in one-

dimensional systems that are linear and passive.

13



THEORIES OF APPLICATION

The equations of the preceding section show how the effects of mechanical impedance variations

on motion may be determined. Although these determinations are generally quite involved, it is recom-

mended that some applications (calculations or measurements) of this type be made on actual systems

before their dynamic environments are firmly specified. With the dynamic environment defined for

one set of systems, the dynamic environment for another set may be predicted by using the appropriate

equations obtained in the last section. After the dynamic environment is defined, the next obvious step

is to attempt to simulate it in the testing environment. In the following sections, various methods of

application that may be useful in achieving some degree of "simulation" are presented.

Development of Specifications

The development of realistic shock and vibration specifications has been hindered largely by the

fact that the true dynamic environmental conditions have not been known until the system actually has

undergone service environments. Consequently, attempts to consider new dynamic environments

often result in merely modifying existing specifications into new specifications to be used for testing

prior to subjecting the system to service. Unless specifications are changed and are developed on a

sound basis, they may be much in error. It is evident from the relations previously given that the

dynamic characteristics of the system components should be considered. These equations thus provide

a set of relations by use of which realistic specifications may be rectified or formulated. Simple

examples illustrating the application of the relations are given in the following examples.

Examples of Application

Simple examples illustrating the application of Equations 3, 29, 50, and 63 are given in the follow-

ing discussion.

Measurement Approach

Consider a block representation of a foundation-equipment system as depicted in Figure 5. In

Figure 5b, let F b ( t ) = 0. We wish to predict the velocity at terminal b resulting from the application

of F ( t ) at terminal a, after connecting an equipment of mechanical impedance Zo to the terminal b.

First, block the terminal b and measure the blocked force F_ (t) exerted at that terminal; the quantity

F a ;tl is the normal exciting forcing function acting. Its nature--that is, whether it is steady-state,

transient, or random--determines which cases below must be used. Replace all force generators with

impedances equal to their internal impedances; then measure the mechanical impedance Zf looking

back into the foundation from the terminal b, and the mechanical impedance Z e looking into the equip-
ment from the terminal b.

14



1. Steady-state case:

From Equation 3, the velocity phasor*

qb corresponding to the velocity _h (t)at the

terminal b after connecting Z is

qb : [Zf + Zel-1 Qtb (a)

where Qbb is the force phasor corresponding to

the blocked force Fbb ( t

2. Transient case:

From Equation 50, the response _b I t ) at

the terminal b after connecting Z is

G b (i_) e'°_tdw, (b)

F b

where GFbb (i_) is the Fourier spectrum of the

blocked force F_ ( t ).

3. Random case:

From Equation 63, the spectral density

S%(_) of the response £b (t) at the terminalb

after connecting z e is

s%(_) : ]zfci_)+z (i_)l-2s b(_),F_ (c)

Fa(t)

xa(t)

Fa(t)

Xa(t)

m---I I----I
I I I I
I I--,%%%-_ _-
I I I I

--'3 I I I

I I--_]---'-'I I--
I I I I
L.__I U__I

I-----I
I I

---"v",,/_.---il
I I
I I

I I
I___1

t FOU N DATION, t EQUIPMENT,
MECHANICAL MECHANICAL

a IMPEDANCE =Zf b IMPEDANCE =Z e

a. One-dimensional foundation-equipment system

I.... 1 r.... /
I I-- -- -- --_v_,/_,r - --- -J I- -

,I I I I
I i I I'
I I --_ I I
I I- .... _ -- -----I I--
I.... J [.... I

FOUNDATION, Zf

b. Foundation system before connection
to equipment system

....... %,k/,v

- ,_-.

r
i

-4
i
i
I
.4
I
[

EQUIPMENT, Ze

c, Equipment system before connection
to foundation system

Figure 5--Block diagrams of foundation and
equipment systems,

where SF_(_') is the spectral density of the blocked forceFb b (t) .

Analytical Approach

Consider a lumped parameter representation of a foundation-equipment system as depicted in

Figure 6. Replace this representation by its equivalent mechanical network shown in Figure 7.

*The term phasor as used here implies magnitude and phase of a quantity.
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I Kf I Kel

I . " . i ..

L ____A

1 FOUNDATION f EQUIPMENT

a b

Figure 6--Lumped parameter representation of a one-
dimensional foundation-equipment system.

a

Z2

>>Zx

b b c

Z3 Z 5

- 0 0

Figure 7---Mechanical network equivalent of Figure 6.

In Figure 7,

Z 1 = SMfl

Z 3 = sMf2

K
e 1

Z4 = -E" +C

Z 5 = sM
e 1

(d)

Block terminal b and determine the trans-

form blocked force Q_ corresponding to the

blocked forceF_ (tl exerted at that terminal.

Assuming the excitation

F (t) : F0 sin _t (e)

and letting Q(s) be the Laplace transform of F { t ), the transform Q_ is

[1 ]-'Q_(_) : +z_z#, Q(_). (f)

(For other excitations, the appropriate expressions must be written.) Assuming that the imped-

ance of the force generator is low (_0), the impedance looking back into the foundation from the

terminal b is

z_ (,) : z, z, (z,+ z,)-, +z, ; (g)

and the impedance looking forward into the equipment is

Z (s) : Z4Zs(Z4 +Zs)-1 • (h)

16



1. Steady-state case:

Using Equation 3 and letting

.,_1 : [zfcs>+zocs_]-,, (i)

the transform velocity qb corresponding to the velocity _b Ct ) at the terminal b after connecting Zo is

dtb (s) =: H l (s)[l+Z 1Z21]-IQ(s) - (j)

2. Transient case:

Determining the Fourier spectrum G b (i_) of the blocked force F b (t) from
F b

1 (+®

GFbU(i_) = _'_/°J- Fbb It) e -i_t dt, (k)

where

f'® GL(i_) [ - }I-_
Fbb(t ) = 1 +Z1 (ia:) Z21 (icy eiWt dcz ,

=-m
(1)

and using Equation 50, the response _b ! t ) at the terminal b after connecting zo is

co
Xb (t) = H1 (i_}G b i_) eiWt d°J '

v=-m F b
(m)

where

HI (i_,) : H I (s)]_=L_ (n)

3. Random case:

Determining the spectral density SF.(
,>J) of the blocked force Fub t)from

) -2S_
SF_ (_) : 1 +Z 1 (ico) Z_ 1 (i,<_ . (_,_) (o)

17



where SF (w) is the spectral density of the excitation F 8 ( t ), and using Equation 63, the spectral den-

sity S_b (_) of the response £b (t) at the terminal b after connecting Z e is

S_b (_)) ---- Hi (i_)2 1 +Z t(iw) Z2-t(iw)-2 SF (°_)' (p)

The examples that would illustrate the application of the other equations of the section, "Im-

pedance Analyses of One-Dimensional Systems," would be similar to the preceding examples.

Reshapingof Frequency Response Characteristic of Test Machines

The method as proposed here involves the control of test-machine bare-table frequency response

characteristics, so that appropriate mechanical impedance compensations are introduced: This re-

suits in dynamic characteristics at the table that are simulations of the vehicles' terminal character-

istics. In some instances this control may be accomplished by various spectrum-shaping techniques

employing present-day machine system equalization methods. It is the purpose here to present some

general ideas behind such an approach.

In the section on impedance analyses, it was shown that the free velocity (bare-table velocity) of

a test machine maybe related to the free velocity or blocked force--as the case may be--of a vehicle.

(Refer to Equations 21, 23, 57, 58, 75, and 76.) For this discussion, the steady-state case only shall

be used, as the general idea is equally valid for the cases of other types of excitations. It can be

shown from test-machine technology that the blocked force Qb (s) at the bare table may be related

to the armature current I d (s) by an expression of the form

Q_(s) = B, (s)I d {s) , (81)

where B 1 (s) is a transfer function. As the consequence of Equation 81, the free velocity of the test

machine _s=0(s) may be related by an expression in a similar form:

_ls=o(S) : B 2 (S) I d (S) , (82)

where B2 (s) may be considered as another transfer function. With the assumption that the above re-

lations are practical, the nature of the control will be studied.

Let us suppose that an uncontrolled frequency response function is defined by

qso (in)

log _ : l°glB_ (i_)l ' (83)
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For simulation the free velocity, Equation 21, may be expressed by

qsmo (i(_:) -" _ts'moI i,_) K(ia_) qsmo (i:,,) (84)

and the new armature current by

I d { ia_) : C (i(_) _d (i(_)) , (85)

where K(ic_) and C(i_J) may be considered as correction factors.

The substitution of Equations 84 and 85 in 83 yields

qs'o (i_l
Ilog --,_TT-T., logB 2 (i_) + logR (i_)[

I a
(86)

where R(i(.) - K(i_)C(iw).

It is seen that the controlled frequency response function of the test machine is given by Equation

86; the last term on the right of the equation may be considered the correction to be made. This cor-

rection may be attempted by either mechanical or electrical means. Mechanically, it would involve

mechanical fixture designs; and, electrically, it probably would involve spectrum-shaping techniques.

Electronic Computer Applications

Advances made in servo control theory and problem simulation with electronic computers offer

some hope that methods of mechanical impedance simulation could revolve around the use of elec-

tronic computer techniques. In view of the multitude of physical applications employing computers

for real-time servo control and as problem simulators for analysis, these approaches offer some

promise. The general ideas behind these approaches may be summarized as follows.

In servo control applications the electronic computer forms a part of a larger system. It re-

ceives impedance and velocity information from other parts of the system and from the outside,

processes this information, and--as a result--furnishes instructions to other parts. Since the timing

of the computer operations is tied in with that of the system, the computer works in real time. The

type of computer (analog or digital) to be used depends on the natural advantages to be derived. The

role of the computer is to perform mathematical computations so as to convert stored information

supplied from outside into velocity magnitudes to be used as variable inputs (level sets) to the servo

control system.

For use as problem simulators for analysis, special-purpose computers may be built. For in-

stance, if a mechanical system is defined by the appropriate impedances, the computer can simulate

the reaction of the components of the system. If true dynamic inputs are employed, the computer

outputs would yield realistic dynamic responses of the system.
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Thedetailsof theseapproacheshavenotbeeninvestigated,but the authorsbelievethat suchap-
proachesare possibleandwarrant further study.

DISCUSSION

The objective of this paper was not to investigate in detail the many existing problems in employ-

ing the concepts of mechanical impedance to dynamic environmental simulation but rather to provide

guidelines based on theoretical considerations, by which certain aspects of simulation possibly may

be achieved.

The equations governing the nature of simulation for one-dimensional structural systems have

been derived and are summarized in the section on impedance analyses. Study of these equations

shows the potential errors resulting from neglect of mechanical impedance effects during measure-

ments, testing, and design of a system. Too frequently the tacit assumption that shock and vibration

testing machines possess dynamic characteristics much like those of the actual equipment foundation

is not true. Likewise, the tacit assumption that foundation impedance is large in comparison with

equipment impedance is often wrong and may result in large errors in design and subsequent qualifica-

tion testing of the system.

The possible magnitude of the bad effects in neglecting mechanical impedance should stimulate a

desire to understand further the mechanisms by which the dynamic characteristics of system com-

ponents alter the behavior of combined system dynamic environments. Theoretically, the effect of

impedance variations on the motional parameter at any joining terminal of system components is re-

lated both to the influence of the backward and forward impedance at the terminal and to the nature of

the type of excitations. This point is illustrated by the equations summarized in the impedance

analyses section.

In the opinion of the authors, some amount of structural impedance consideration in design and

qualification procedures is highly necessary to prove the suitability and efficiency of any new type of

structural design or to improve existing designs.

The application of mechanical impedance simulation to systems of more than one dimension is an

exceedingly complex problem and requires much more study. However, some practices now used

yield such large errors that even one-dimensional analysis (which often will be approximate) should

yield significant improvement.

CONCLUSIONS

Several main conclusions may be drawn from this study:

1. The study, and possibly the control, of pertinent structural dynamic characteristics for one-

dimensional structures that are linear-passive in nature is theoretically feasible, by use of mechani-

cal impedance.
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2. Theusefulnessof thesemechanicalimpedancerelationsis of threekinds: (1)asa meansof
expressingdynamiccharacteristicsof componentstructuresin a mannerthatconciselytells the ex-
periencedengineerwhatheneedsto knowaboutthestructures;(2)as a descriptionof integral parts
of structures,sinceit canbeusedtogetherwith a comparabledescriptionof the dynamicinputsto
specifytheresponseat anydesiredterminal; and(3)if dynamicresponsesareknownfor a particular
integratedstructure, themodifiedresponseswhenintegralparts of the structureare altered canbe
determinedprovidedimpedanceinformationfor thenewandold integratedstructuresare known.

3. Thepractical applicationsof the mechanicalimpedancerelationscoveredin the foregoing
theorycannotbestatedaccuratelybecauseof therestrictive assumptionsunderlyingthis work. How-
ever, theproperextentof their applicationmaybedeterminedby suitableexperiments.

RECOMMENDATIONS

Several recommendations result from this investigation:

1. Experimental studies should be undertaken to validate (or refute) the usefulness of the theo-

retical relations summarized in this paper and to define limits of applicability and validity for each

type of excitation.

2. Effort should be directed toward the development of sensors for measurement and the develop-

ment of data reduction equipment and methods for analysis of the parameters that have been discussed.

3. The validity of the approaches presented to improve test control or simulation should be in-

vestigated in further studies.

4. As most structures are not ideal one-dimensional systems, effort should be expended toward

developing theoretical relations for multi-dimensional systems.
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AppendixA

Symbols

General

a,k sub-subscripts for specific vehicle

ab, at, kb,mb denote respectively the joining terminal of v - Pb' Va - Pr'

b, r sub-subscripts for specific payload

m sub-subscript for specific test machine

N denotes Nth harmonic component

P subscript for payload

S subscript for test machine

s Laplace variable

t time variable

v subscript for vehicle

circular frequency

denotes simulating a quantity

Vk - Pb' and Sm - Pb

Velocities

_(s)

qvo (s)

_tVko ( s )

Cls0 (s)

_tv b (s)

transform velocity

transform free velocity of V at terminal a

transform free velocity of vk at terminal a

transform free velocity of s m at terminal a

transform velocity at joining terminal of v - Pb

transform velocity at joining terminal of v - Pr
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_vkb ( s 1 transform velocity at joining terminal of v k - PD

_S b ( s ) transform velocity at joining terminal of s m- Pb

Gx (i_) Fourier spectrum of a transient velocity ;((t)

S_ (_) spectral density of a random velocity £(t)

/_(t ) time-dependent velocity

Forces

Fnb amplitude of Nth harmonic component blocked force

GF (io_l Fourier spectrum of a transient force F(tl

Q(s 1 transform force

Qb (s transform blocked force of v at terminal a

b (s transform blocked force of v k at terminal aQvk

s F (_) spectral density of a random force FI t )

Impedances

Z(ion)

Z(s) : Q( s )/9( s ), definition of transform mechanical impedance

= Z(s) =_

Zvb ( s ) mechanical impedance of PD looking forward from terminal a

Zp (s) mechanical impedance of P looking forward from terminal a
r

Z s (s) mechanical impedance of s m looking back from terminala
m

Z v (s) mechanical impedance of v looking back from terminala
a

Zv°b (s I point mechanical impedance at joining terminal of va - PD

Frequency Response Functions

Ez, 6 (s) = H 1 (s] H a z (s

E2. 6 (s) H 2 (s) H6-1 (s
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Eg,I (i_) = H9 li_) FII-1 (i._)

/_qfio:)/ = absolute value of msl/__=_

HIiN_.) = ms)L=_n_

HI (s) = EZ 7-1

/'Iu fs; = Zv(s)_Zv(s
) + (s_ "IzPb

L (s) +Zp_ _s Is) + _'_v z_

+Z_b s Zv_<i
-!

tt.<s_ : Zs(s;[Zs<s> ' <._.,z%

ttT fss -- _ (sI +z% ( 2]. -,S m ,_

Zv_ fs) vk(S) _Zp_ Cs

Hg (s) _ EZ J-Iv_(s) (s+Zpb

NaS,_-L,,,,,_I_..,963 G-392
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